
1/9

Clean XML duplicate nodes using XSLT

19.10.23

Pegasi Knowledge
https://ghost.pegasi.fi/wiki/

Clean XML duplicate nodes using XSLT 19.10.23
2/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Table of Contents
The source data 3 ...
Muenchian method 4 ...
The traditional method 5 ..
The optimized method 5 ...
The very optimized but compromised method 6 ..
Heavily optimized AND working method 7 ...
Keys or no keys 7 ...
Sort or no sort 7 ...
Results and conclusion 8 ..

IDM scripting language method 8 ...
Muenchian method 8 ..
Muenchian method with globally indexed keys 8 ...
The optimized method 8 ...
The very optimized method 8 ...
The heavily optimized AND working method 8 ...

Quick words 9 ...

Clean XML duplicate nodes using XSLT 19.10.23
3/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Clean XML duplicate nodes using XSLT

I am wrestling with SAP XML files. Those of you who know SAP XML dumps know that they are one big
beasts with gigabytes of complex XML, separate node structures with no ids to bind them together
and interesting German namings.

I am using XSLT to make them NetIQ IDM compatible XML but in my case there are lots of duplicate
nodes and I want to get rid of them. I also need to do it efficiently without eating a terabyte of RAM so
I have to do it with XSLT in a special way.

The source data

The XML output by SAP contains numerous parallel and serial paths to but no point in trying to
demonstrate it here. For documentation's sake here is a snipplet of how it looks like as it enters the
NetIQ IDM:

<ZHRMD_IAM>
 <IDOC BEGIN="1">
 <EDI_DC40 SEGMENT="1">
 <TABNAM>EDI_DC40</TABNAM>
 <MANDT>300</MANDT>
 <DOCNUM>00000000123456</DOCNUM>
 <DOCREL>123</DOCREL>
 ...continues....

Using NetIQ XSLT policy I've flattened the XPATH structures to XML attribute names consisting of
infotype and element names concatenated with ':'. So now we have an IDM compatible XML file that
looks something like this :

<nds dtdversion="1.1" ndsversion="8.6" xml:space="default">
 <input>
 <add class-name="Class" src-dn="1234">
 <association>1234</association>
 <add-attr attr-name="0001:PERNR">
 <value type="string">1234</value>
 </add-attr>
 <add-attr attr-name="0001:SEQNR">
 <value type="string">000</value>
 </add-attr>
 <add-attr attr-name="0001:INFTY">
 <value type="string">0001</value>
 </add-attr>
 <add-attr attr-name="0001:ENDDA">

Clean XML duplicate nodes using XSLT 19.10.23
4/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

 <value type="string">20181212</value>
 </add-attr>
 ..cut from here..
 </add>
 </input>
</nds>

Now I've got something to work with but I've also got a lot of duplicate nodesets that have no
informational value. They only consume log space making my debugging harder.

Muenchian method

The first thing I tried is to use Muenchian method to clean out duplicate nodes. Muenchian method is
a way to get unique valued nodeset from given nodeset. It utilizes keys and XSLT techniques to reach
the conclusion with a minimal footprint. At least so they say.

The downside of this method in this case is the key functionality. While it is a fast method the keys it
uses can only be initialized globally above the template match context therefore needing to index
every single node from every single entry of your iDoc making it extremely slow with large files. See
the traditional method from below for larger files.

Using Muenchian method requires us to list unique association-attribute-value combinations to reach
every node and value of every person so we define a key accordingly :

<xsl:key name="attr-by-value" match="add-attr"
use="concat(../association,'+',@attr-name,'+',value)"/>

After which we can remove duplicates with add (E1PLOGI) matching, which seems to be fastest option
of Muenchian method :

<xsl:template match="add[@class-name='person']">
 <add class-name="{@class-name}" src-dn="{@src-dn}">
 <association><xsl:value-of select="association"/></association>
 <xsl:for-each select="add-attr[count(. | key('attr-by-value',
concat($association,'+',@attr-name,'+',value))[1]) = 1]">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </add>
</xsl:template>

Also you can also use generate-id() to select unique nodes. But let it be noted that the performance is
the same with it:

 <xsl:for-each select="add-attr[generate-id() = generate-id(key('attr-
by-value', concat(@attr-name,'+',value))[1])]">

Clean XML duplicate nodes using XSLT 19.10.23
5/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Or straight up you can do add-attr template matching, which is a compact piece of code but notably
slower and working with smaller dumps :

 <xsl:template match="add-attr[not(generate-id() = generate-id(key('attr-
by-value', concat(../association,'+',@attr-name,'+',value))[1]))]"/>

The aboce xpath selections generate a ton of iterations for a larger file so be aware of that.

The traditional method

This is the traditional way of doing the deduplication of nodes and it seems a better alternative for
larger files.

We template match one E1PLOGI (=add) at a time and for-each select with attribute and value
checks. Here is the code :

<xsl:template match="add[@class-name='element']">
 <add class-name="{@class-name}" src-dn="{@src-dn}">
 <association><xsl:value-of select="association"/></association>
 <xsl:for-each select="add-attr[@attr-name!=preceding-sibling::add-
attr[value=preceding-sibling::add-attr/value]/@attr-name]">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 </add>
</xsl:template>

The optimized method

The methods above are all inefficient due to multiple concurrent loops. Whether you use for-each or
direct template matching something like following will happen:

for loop goes through all of the nodes
direct template match goes through all of the nodes
key functionality will query all attributes and create nodesets from all of them with every single
attribute in a loop and compare them
the last method will query all attribute names from all attributes with same values and
compares both

A single person entry in SAP XML is hundreds or even thousands of rows - resulting to a mess.

An optimized and fully working way is to sort the nodes with attribute name and value, compare
against following nodes (vs all of the nodes) and copy / skip based on that. It is a big improvement to
the above. Here is the code :

Clean XML duplicate nodes using XSLT 19.10.23
6/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

<xsl:template match="add[@class-name='element']">
 <add class-name="{@class-name}" src-dn="{@src-dn}">
 <association><xsl:value-of select="association"/></association>
 <xsl:for-each select="add-attr">
 <xsl:sort select="@attr-name"/>
 <xsl:sort select="value"/>
 <xsl:if test="not(@attr-name = following-sibling::add-
attr/@attr-name) or not(value = following-sibling::add-attr/value)">
 <xsl:copy-of select="."/>
 </xsl:if>
 </xsl:for-each>
 </add>
</xsl:template>

The very optimized but compromised method

The most time optimized way is to sort the nodes with attribute name and value, compare only
against next node (vs all of the nodes) and copy / skip based on that. This is a huge the winner when
performance is concerned but the result is not 100% guaranteed. See the results at the end of this
page. Here is the code :

<xsl:template match="add[@class-name='element']">
 <add class-name="{@class-name}" src-dn="{@src-dn}">
 <association><xsl:value-of select="association"/></association>
 <xsl:for-each select="add-attr">
 <xsl:sort select="@attr-name"/>
 <xsl:sort select="value"/>
 <xsl:if test="not(@attr-name = following-sibling::add-
attr[1]/@attr-name) or not(value = following-sibling::add-attr[1]/value)">
 <xsl:copy-of select="."/>
 </xsl:if>
 </xsl:for-each>
 </add>
</xsl:template>

Why is it not guaranteed working? Even though the source material is sorted there is no guarantee
that following-sibling returns the node set in the same order. You can improve the odds by sorting the
material in previous policy but still it seems not to be 100% accurate with large material. So we must
give up the next node checking and settle with checking the rest of the nodes - unless you are happy
with some occasional duplicates showing up.

Clean XML duplicate nodes using XSLT 19.10.23
7/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Heavily optimized AND working method

I decided to try a very straightforward way to first sort my XML in it's own policy and use counter with
compare to the next element. This resulted in execution time reduction to roughly 1/5 of the time it
took to do the optimized version! That is fast! Here is the code :

<xsl:template match="add[@class-name='element']">
 <add class-name="{@class-name}" src-dn="{@src-dn}">
 <association><xsl:value-of select="association"/></association>
 <xsl:for-each select="add-attr">
 <xsl:variable name="position" select="position()"/>
 <xsl:if test="not(@attr-name = ../add-
attr[position()=($position+1)]/@attr-name) or not(value = ../add-
attr[position()=($position+1)]/value)">
 <xsl:copy-of select="."/>
 </xsl:if>
 </xsl:for-each>
 </add>
</xsl:template>

Keys or no keys

At first I tried to reuse same keys per person such as :

<xsl:key name="attr-by-name" match="add-attr" use="@attr-name"/>

But it resulted in illogical outcomes indicating that a key entry must be unique per stylesheet / XML
file, as in the Muenchian example earlier in this document. You cannot have a key with attr-name and
use it over again per user in the same XML document. The key index will be allocated and by trying to
reallocate it you will end up with unexpected results.

If you have multiple repeating entries with similar attributes you need to create a unique key entry
per XML document and that may be a showstopper. In my case it would have resulted in hundreds of
thousands indexes. So for larger XML files keys are a no-go.

Sort or no sort

Sorting is the key to solution here. Sorting in XSLT is quick. Very quick. And now when we're sorted
we can compare the current node only against the next one! That is a huge win.

Clean XML duplicate nodes using XSLT 19.10.23
8/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Results and conclusion

My test material was around 7000 rows of XML containing roughy 80 users' data. Here are some times
to illustrate the effectiveness of different methods :

IDM scripting language method

Roughly 21 minutes
Very simple to do
Easily debuggable with IDM tracing

Muenchian method

Using unique keys / person, template matching each person
Roughly 6-7 minutes
Did not produce correct results due to key index recycling
Unusable

Muenchian method with globally indexed keys

Using unique keys globally, template matcing each person
Did not complete in 1 hour, did not wait longer
Unusable

The optimized method

Template matching each person
Sorting the input
Comparing the results to the remaining nodes
56 seconds

The very optimized method

Template matching each person
Comparing the results to the next node
3.8 seconds
Not 100% accurate results

The heavily optimized AND working method

Clean XML duplicate nodes using XSLT 19.10.23
9/9

Pegasi Knowledge - https://ghost.pegasi.fi/wiki/

Template matching each person
Comparing the results to the next node using node positioning
Roughly 10 seconds
Works

Quick words

This document is a result of multiple tweaks, mistakes and tests. You can make a big difference on
how fast your XML is processed and strangely enough you can even make a compromise between
accuracy and performance. XSLT with two axis sorting cuts down the required number of operations
as well as memory usage very dramatically but it seems that following-sibling statement is possibly so
optimized and operating on memory's terms that is does not guarantee the order of things? Hope to
get some second opinions on that.

	Table of Contents
	Clean XML duplicate nodes using XSLT
	The source data
	Muenchian method
	The traditional method
	The optimized method
	The very optimized but compromised method
	Heavily optimized AND working method
	Keys or no keys
	Sort or no sort
	Results and conclusion
	IDM scripting language method
	Muenchian method
	Muenchian method with globally indexed keys
	The optimized method
	The very optimized method
	The heavily optimized AND working method

	Quick words

